420 research outputs found

    WFPC2 LRF Imaging of Emission Line Nebulae in 3CR Radio Galaxies

    Get PDF
    We present HST/WFPC2 Linear Ramp Filter images of high surface brightness emission lines (either [OII], [OIII], or H-alpha+[NII]) in 80 3CR radio sources. We overlay the emission line images on high resolution VLA radio images (eight of which are new reductions of archival data) in order to examine the spatial relationship between the optical and radio emission. We confirm that the radio and optical emission line structures are consistent with weak alignment at low redshift (z < 0.6) except in the Compact Steep Spectrum (CSS) radio galaxies where both the radio source and the emission line nebulae are on galactic scales and strong alignment is seen at all redshifts. There are weak trends for the aligned emission line nebulae to be more luminous, and for the emission line nebula size to increase with redshift and/or radio power. The combination of these results suggests that there is a limited but real capacity for the radio source to influence the properties of the emission line nebulae at these low redshifts (z < 0.6). Our results are consistent with previous suggestions that both mechanical and radiant energy are responsible for generating alignment between the radio source and emission line gas.Comment: 80 pages, 54 figures. Accepted for publication in ApJ

    Extended X-ray emission in radio galaxies: the peculiar case of 3C 305

    Full text link
    Extended X-ray structures are common in Active Galactic Nuclei (AGNs). Here we present the first case of a Compact Steep Spectrum (CSS) radio galaxy, 3C 305, in which the X-ray radiation appears to be associated with the optical emission line region, dominated by the [O III]5007. On the basis of a morphological study, performed using the comparison between the X-rays, the optical and the radio band, we argue that the high energy emission has a thermal nature and it is not directly linked to the radio jet and hotspots of this source. Finally, we discuss the origin of the extended X-ray structure connected with the optical emission line region following two different interpretations: as due to the interaction between matter outflows and shock-heated environment gas, or as due to gas photoionized by nuclear emission.Comment: 5 pages, 2 figures, Accepted for publication in The ApJL Comments: references and affilitations correcte

    High Frequency Peakers: young radio sources or flaring blazars?

    Get PDF
    We present new, simultaneous, multifrequency observations of 45 out of the 55 candidate High Frequency Peakers (HFP) selected by Dallacasa et al. (2000), carried out 3 to 4 years after a first set of observations. Our sub-sample consists of 10 galaxies, 28 stellar objects (``quasars'') and 7 unidentified sources. Both sets of observations are sensitive enough to allow the detection of variability at the 10% level or lower. While galaxies do not show significant variability, most quasars do. Seven of them no longer show the convex spectrum which is the defining property of Gigahertz Peaked Spectrum (GPS)/HFP sources and are interpreted as blazars caught by Dallacasa et al. (2000) during a flare, when a highly self-absorbed component dominated the emission. In general, the variability properties (amplitude, timescales, correlation between peak luminosity and peak frequency of the flaring component) of the quasar sub-sample resemble those of blazars. We thus conclude that most HFP candidates identified with quasars may well be flaring blazars.Comment: 20 pages, 18 figures, accepted for publication in Astronomy & Astrophysic

    Observations of HI Absorbing Gas in Compact Radio Sources at Cosmological Redshifts

    Get PDF
    We present an overview of the occurrence and properties of atomic gas associated with compact radio sources at redshifts up to z=0.85. Searches for HI 21cm absorption were made with the Westerbork Synthesis Radio Telescope at UHF-high frequencies (725-1200 MHz). Detections were obtained for 19 of the 57 sources with usable spectra (33%). We have found a large range in line depths, from tau=0.16 to tau<=0.001. There is a substantial variety of line profiles, including Gaussians of less than 10km/s, to more typically 150km/s, as well as irregular and multi-peaked absorption profiles, sometimes spanning several hundred km/s. Assuming uniform coverage of the entire radio source, we obtain column depths of atomic gas between 1e19 and 3.3e21(Tsp/100K)(1/f)cm^(-2). There is evidence for significant gas motions, but in contrast to earlier results at low redshift, there are many sources in which the HI velocity is substantially negative (up to v=-1420km/s) with respect to the optical redshift, suggesting that in these sources the atomic gas, rather than falling into the centre, may be be flowing out, interacting with the jets, or rotating around the nucleus.Comment: 10 pages, accepted for publication in A&

    Evidence for Ordered Magnetic Fields in the Quasar Environment

    Get PDF
    At a distance of 20 pc from the purported supermassive black hole powering quasars, temperatures and densities are inferred from optical observations to be ~10**4 K and ~10**4 cm**-3. Here we present Very Long Baseline Interferometry radio observations revealing organized magnetic fields on the parsec scale in the hot plasma surrounding the quasar OQ172 (1442+101). These magnetic fields rotate the plane of polarization of the radio emission coming from the core and inner jet of the quasar. The derived rotation measure (RM) is 40,000 rad m**-2 in the rest frame of the quasar. Only 10 mas (a projected distance of 68 pc) from the nucleus the jet absolute values of RM fall to less than 100 rad m**-2.Comment: in press at ApJ Letters, 12 page LaTeX document includes 4 postscript figure

    Vitamin D status and the risk of type 2 diabetes: the Melbourne Collaborative Cohort Study

    Get PDF
    Aims: Inverse associations between vitamin D status and risk of type 2 diabetes observed in epidemiological studies could be biased by confounding and reverse causality. We investigated the prospective association between vitamin D status and type 2 diabetes and the possible role of reverse causality. Methods: We conducted a case-cohort study within the Melbourne Collaborative Cohort Study (MCCS), including a random sample of 628 participants who developed diabetes and a sex-stratified random sample of the cohort (n=1,884). Concentration of 25-hydroxyvitamin D (25(OH)D) was measured using liquid chromatography-tandem mass spectrometry in samples collected at recruitment. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the risk of type 2 diabetes for quartiles of 25(OH)D relative to the lowest quartile and per 25 nmol/L increase in 25(OH)D, adjusting for confounding variables. Results: The ORs for the highest versus lowest 25(OH)D quartile and per 25 nmol/L increase in 25(OH)D were 0.60 (95% CI: 0.44, 0.81) and 0.76 (95% CI: 0.63, 0.92; p=0.004), respectively. In participants who reported being in good/very good/excellent health approximately four years after recruitment, ORs for the highest versus lowest 25(OH)D quartile and per 25 nmol/L increase in 25(OH)D were 0.46 (95% CI: 0.29, 0.72) and 0.71 (95% CI: 0.56, 0.89; p=0.003), respectively. Conclusions: In this sample of middle-aged Australians, vitamin D status was inversely associated with the risk of type 2 diabetes, and this association did not appear to be explained by reverse causality

    The MURALES survey. I. A dual AGN in the radio galaxy 3C459?

    Get PDF
    We observed the FRII radio galaxy 3C459 (z=0.22) with the MUSE spectrograph at the Very Large Telescope (VLT) as part of the MURALES project (a MUse RAdio Loud Emission line Snapshot survey). We detected diffuse nuclear emission and a filamentary ionized gas structure forming a one-sided, triangular-shaped region extending out to \sim80 kpc. The central emission line region is dominated by two compact knots of similar flux: the first (N1) cospatial with the radio core and the (N2) second located 1.2" (5.3 kpc) to the SE. The two regions differ dramatically from the point of view of velocity (with an offset of ~400 km/s), line widths, and line ratios. This suggests that we are observing a dual AGN system formed by a radio loud AGN and type 2 QSO companion, which is the result of the recent merger that also produced its disturbed host morphology. The alternative possibility that N2 is just a bright emission line knot resulting from, for example, a jet-cloud interaction, is disfavored because of 1) the presence of a high ionization bicone whose apex is located at N2; 2) the observed narrow line widths; 3) its line luminosity (~10^42 erg s-1) typical of luminous QSOs; and 4) its location, which is offset from the jet path. The putative secondary AGN must be highly obscured, since we do not detect any emission in the Chandra and infrared Hubble Space Telescope images.Comment: 6 pages, 6 figures, A&A in pres

    ISO observations of a sample of Compact Steep Spectrum and GHz Peaked Spectrum Radio Galaxies

    Get PDF
    We present results from observations obtained with ISOPHOT, on board the ISO satellite, of a representative sample of seventeen CSS/GPS radio galaxies and of a control sample of sixteen extended radio galaxies spanning similar ranges in redshift (0.2 = 10^26 W/Hz). The observations have been performed at lambda = 60, 90, 174 and 200 microns. Seven of the CSS/GPS sources have detections >= 3 sigma at one or more wavelengths, one of which is detected at >= 5 sigma. By co-adding the data we have obtained average flux densities at the four wavelengths. We found no evidence that the FIR luminosities of the CSS/GPS sources are significantly different from those of the extended objects and therefore there is not any support for CSS/GPS sources being objects "frustrated" by an abnormally dense ambient medium. The two samples were then combined, providing FIR information on a new sample of radio galaxies at intermediate redshifts. We compare this information with what previously known from IRAS and discuss the average properties of radio galaxies in the redshift range 0.2 - 0.8. The FIR emission cannot be accounted for by extrapolation of the synchrotron radio spectrum and we attribute it to thermal dust emission. The average FIR luminosity is >= 6*10^11 L_sun. Over the observed frequency range the infrared spectrum can be described by a power law with spectral index alpha >~1.0 +/- 0.2. Assuming the emission to be due to dust, a range of temperatures is required, from >=80 K to \~25 K. The dust masses required to explain the FIR emission range from 5*10^5 M_sun for the hotter component up to 2*10^8 M_sun for the colder one. (abridged)Comment: Astronomy & Astrophysics, in press, 16 pages, 2 Figure
    corecore